Name | de_nbody_orbit_fitting_10_29_2024_v186_OCS_no_vlos__data__6_1728366658_2476536_1 |
Workunit | 991065013 |
Created | 29 Oct 2024, 23:13:24 UTC |
Sent | 29 Oct 2024, 23:13:48 UTC |
Report deadline | 10 Nov 2024, 23:13:48 UTC |
Received | 30 Oct 2024, 2:13:00 UTC |
Server state | Over |
Outcome | Success |
Client state | Done |
Exit status | 0 (0x00000000) |
Computer ID | 1035282 |
Run time | 1 sec |
CPU time | |
Validate state | Valid |
Credit | 0.21 |
Device peak FLOPS | 31.31 GFLOPS |
Application version | Milkyway@home N-Body Simulation with Orbit Fitting v1.87 (mt) windows_x86_64 |
Peak working set size | 10.52 MB |
Peak swap size | 6.25 MB |
Peak disk usage | 0.01 MB |
<core_client_version>7.14.2</core_client_version> <![CDATA[ <stderr_txt> <search_application> milkyway_nbody 1.86 Windows x86_64 double OpenMP, Crlibm </search_application> Using OpenMP 8 max threads on a system with 16 processors Running MilkyWay@home Nbody v1.86 Optimal Softening Length = 0.000004770383042 kpc Dwarf Initial Position: [4.480167248176792,1013.149243762236097,-781.043435222532594] Dwarf Initial Velocity: [-0.548838695449690,-327.457355897596813,252.359108039840123] Running MilkyWay@home Nbody v1.86 Running MilkyWay@home Nbody v1.86 Number of particles in bins is very small compared to total. (0 << 1). Skipping distance calculation Running MilkyWay@home Nbody v1.86 Number of particles in bins is very small compared to total. (0 << 1). Skipping distance calculation <search_likelihood>-9999999.900000000372529</search_likelihood> <search_likelihood_EMD>-9999999.900000000372529</search_likelihood_EMD> <search_likelihood_Mass>-0.000000000000000</search_likelihood_Mass> <search_likelihood_Beta>-0.000000000000000</search_likelihood_Beta> <search_likelihood_BetaAvg>-0.000000000000000</search_likelihood_BetaAvg> <search_likelihood_Dist>-0.000000000000000</search_likelihood_Dist> strftime() failed called boinc_finish(0) </stderr_txt> ]]>
©2024 Astroinformatics Group